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ABSTRACT

A general purpose nonlinear programming method and

computer code are presented. The method is basically heuristic

but extremely simple and reliable. Interactive operation of the

code and its perfirmance on several test problems is described.
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I. BACKGROUND

Quite commonly, problems in the statistical and engineer-

ing sciences require the optimization of some function for their

solution. Such problems include those of resource allocation,

portfolio selection, curve and surface fitting (e.g., linear

or nonlinear regression), approximation theory, signal processing

algorithms (optimizing a model fit), and optimal control (via

discretization). In addition, systems of nonlinear equations can

be solved by minimizing some function of the magnitudes of the

residuals. As for the statistical sciences in general we have

the following recent comment of C.R. Rao: "All statistical pro-

cedures are, in the ultimate analysis, solutions to suitably

formulated optimization problems" [1].

Throughout this report we shall be concerned with

optimizations of the particular form:

minimize f(x), x 2, (1)

where Q is a solid subset of some finite dimensional Euclidean

space, describable by finitely many contraints. More precisely,

we assume that S can be expressed as

In
0 = lxsn ai<xi<bi, 1<i<n, c< gW.(x)<dj, l<j<m , (2)

with the understanding the Q so defined has a non-empty interior

(is "solid"). No qualitative assumptions on the objective
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function f in (1) or on the constraint functions gj in (2), such

as convexity, differentiability, etc., are made.

Problems of the form of (1) are known as mathematical

programs. They have been the subject of an immense amount of

study over the last forty years, beginning with the well-known

special case of linear programs, wherein the constraint and

objective functions are linear functions of their variables. As

a result a considerable body of both theory and computational

algorithms has been developed, usually under convexity and/or

differentiability assumptions. The books [2-8] provide a

representative description of these developments; in addition,

there are specialized journals such as Journal of Optimization

Theory and Applications (since 1967) and Mathematical Programming

(since 1970).

There is a basic dichotomy in programming algorithms:

they may be designed to converge to local or global minima.

Recall that a local minimum of f is a point x EQ such that
0

f(x)>f(x 0 ) for every x in 0 that is sufficiently near to x0,

while a global minimum is indeed a solution of (1). Local minima

can be characterized or at least partially identified in various

-- ways, depending on the nature of the problem. A prototypical

necessary condition for x0 to be a local minimum of a differentiable

program (subject to a "constraint qualification" on the geometry

of Q) is due to Kuhn and Tucker [9] and might be considered to be the
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fundamental theorem of mathematical programming. In its geometric

form it states in essence that the negative gradient of f at x0

must belong to the cone generated by the gradients at x0 of the

active constraints there. Further, under various generalized

convexity hypotheses, e.g., that f should be pseudoconvex and the

gj quasiconvex, any local minimum is actually a global minimum;

in such a case, then, the Kuhn-Tucker condition characterizes the

solutions of (1). This remark applies a fortiori to the case

where all functions are actually convex.

Such characterizations are sometimes used to provide

stopping criteria for numerical algorithms. For example, should

a local minimum occur at an interior point of 0, as would certainly

be the case if there were no constraints, the K-T condition

reduces to the vanishing of the gradient Vf of f there, and in

practice an algorithm might be terminated at a point where HlVfl

becomes sufficiently small. Of course, such a point will not

necessarily be a local minimum nor even close to one in the absence

of convexity conditions. Similarly the popular "method of feasible

directions" [3,101 attempts to terminate at a Kuhn-Tucker point.

In the important special case where all constraint

functions are linear, so that 0 is a simplex, the constraint

qualification is automatically satisfied. In this case several

a effective algorithms exist provided that V f is available. These

include the method of feasible directions, the gradient projection

algorithm 1111, and an approximation method wherein f is replaced
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by its first onbr Taylor expansion; this approximation yields a linear progran

and the algorithm generates a sequence of such programs [I12].

In this linearly constrained case there are very

efficient finite algorithms available provided the objective

function f is either linear or else convex and quadratic.

Failing this, but with Vf available, the various methods mentioned

in the preceding paragraph generate sequences of linear programs,

systems of linear equations, and line searches (one-dimensional

optimizations) to be solved. Yet other methods generate sequences

of quadratic program~ to be solved by constructing quadratic

approximations to f [13, 141. When Vf is not available but

can be assumed to exist and be smooth, a powerful but rather in-

volved algorithm has recently been described in [15].

For the general (nonlinearly) constrained mathematical

program there are adaptations of the above algorithms obtained

by linearizing the contraints. There is also a variety of

indirect methods which may operate outside the feasible set Q .

Examples are cutting plane algorithms and the use of penalty

functions [2, 41. The former generate a sequence of linear

programs over a decreasing sequence of simplices which enclose Q;

the possiblity of doing so depends on a standard trick of

utilizing a linear objective function at the cost of introducing

an additional variable and constraint. The latter are functions

that are large off 02 and which are added to f ; a sequence of these

new objective functions is then minimized witho~ut cnstraints.* All these
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methods involve assorted numerical difficulties as well as the

possiblity of termination outside S. Should the objective

function be undefined or meaningless off n,this outcome is

naturally untenable.

In the last decade there has been upsurge of interest

in the global optimization problem per se; see [16, 17, 18].

This problem in full generality is very different from and more

difficult than the problem of local optimization just discussed.

There is relatively little theory in support of proposed methods

unless fairly strong restrictions are placed on the problems

to which they are applied.

The methods may roughly be classified as deterministic

or probabilistic, although many methods have both features. Most

of the effort has gone into unconstrained optimization or else

into problems which only involve bounds on the variables.

Of these the probabilistic methods appear in general

more attractive, in part because of the lack of hypotheses that

must be imposed on the problem structure and in part because

they seem less sensitive to increases in dimension. Another

difference concerns the manner of validation of particular

algorithms: with probabilistic methods it may be possible to

give a theoretical a priori measure of tne probability of "success",

while for a deterministic algorithm such a probability can at

best be estimated only through extensive testing.

5



Among the several popular probabilistic methods we

mention specifically only two: the multistart method and the

sample function method. The former is essentially an iterative

cycle of random searches throughout Q followed by application of

a local minimization algorithm. The latter hypothesizes that the

objective function f is a sample function of a known stochastic

process on 0. The statistics of the process then permit new

points in S to be generated according to the information provided

by the values of f at preceding points. Further statistical

testing can be employed to assess the likelihood that f could

indeed be a sample path of such a process. Usually the Wiener

process is assumed. At this date the theory and computational

requirements seem to limit this method to small (perhaps only l!)

dimensional problems.

To conclude this brief background we note that a general

summary of computer codes for mathematical programming that have

been tested, documented, and are available to the public occurs

in [19]. Somewhat earlier there appeared a collection of FORTRAN

listings of optimization codes, along with brief descriptions of

the algorithms and their operations [20]. The potential user

is left to make his own choice as to which method will best serve

his purpose and, unfortunately, the various codes are not of

uniformly high quality.

6
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II. METHODOLOGICAL AND PROGRAMMING DESIDERATA

The authors' experience with numerous "real-world"

optimization problems has persuaded them of the need for a simple

reliable optimization routine that could be interactively operated.

Such a program should in particular be applicable to an essentially

arbitrary objective function, about which little or no prior

information may be available, save a procedure for its evaluation.

This situation occursfor example when the objective function

represents the output of some "black box" operation, perhaps

from a process optimization or simulation model. In any event

the nature of such a function cannot be well understood, gradients

are unavailable except via finite difference approximations,

and convexity (occasionally even continuity) is in doubt. It is

also often the case that the feasible region must be strictly

respected, in that nonfeasible points have no significance for

the problem.

We feel that the nonavailability of analytic gradients

precludes the use of the various local search methods mentioned

in Section I. While some codes have been developed that utilize

difference approximations, this is in general well known to be a

numerically risky and often unstable procedure. There are the

twin perils of too large a differencing interval (leading to

truncation errors) and too small an interval (leading to round-

off and cancellation errors). The situation is not hopeless
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[15, 21, 22] but it is subtle and one we think worth avoiding,

if possible.

The requirements of simplicity, robustness, and generality

lead us to a combination of global random search and local pattern

search. This last term describes a class of methods wherein

the objective function is systematically evaluated at several points

in a neighborhood of a current point, the resulting function

values are compared, and a new improved point is selected. A

finite number of failures to locate an improved point results in

termination. These methods, and their termination criteria, are

for the most part heuristic, unsupported by significant mathematical

statements of optimality. Nevertheless, they can usually be

expected to perform well, if suboptimally; they will rather

quickly produce a "good" function value, although extreme accuracy

may require many further evaluations, and premature stalls are

possible. Exact solutions to specialized problems (such as an

extreme point solution of a concave minimization) will not normally

be determined precisely.

These last observations lead to an important caveat:

if a program with special structure is confronted there will most

likely exist a more effective specialized algorithm. Of course

tracking down such a method, especially in reliable coded form, may not

be easy (the sources in [19, 20] should be helpful for this

purpose). Another practical point is this: computer time, even
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at several hundred dollars/hour is still cheaper than programmer/

analyst time at $10-20/hour. Even if, say, a routine utilizing

gradient (and possible Hessian) data is available, these deriva-

tives must still be calculated and encoded. The savings might

typically amount to a few tenths of a second of execution time,

probably not a cost effective trade-off. An important possible

exception to this advice occurs when the purpose of the optimizing

code is to serve as a subroutine of some large program, which is

to process data in real time, and to apply some control law. In

such a case speed and efficiency are likely to be of real concern,

and specialized software may be required.

A review of several popular methods of pattern search,

including the complex method which underlies the approach described

below, is given in Chapter VII of [41 and in [6,7]. We also take

note of an earlier two-stage heuristic method for unconstrained

optimization announced in [231. It consists of a single non-ran-

dom global search of pre-determined length from a given initial

point followed by a local pattern search. The latter is of the

Hooke-Jeeves type [6,71, with a modification to account for

* curvature in the gradient path. No restart or other interactive

features are offered.

9
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III. THE PROPOSED METHOD

The following method meets the criteria we have just

imposed: it is simple, versatile, robust, and can be operated

interactively. It requires as inputs the absolute minimum of

information that is needed to specify a mathematical program of

the type (1), (2), plus a few parameters that essentially deter-

mine how much work the program will do. We also emphasize that

the proposed nethod requries no linear algebraic subroutines,

such as matrix inversions or linear equation solvers, nor does

it construct derivative approximations. Our code can thus serve

as an "off the shelf" package for optimization, model fitting, and

nonlinear equation solving. Several examples illustrating the

program's use for such applications will be given in Section V.

In essence the program utilizes the fundamental idea

of Box [24], wherein a random finite set of feasible points is

generated and successively deformed (based on information gleaned

from function evaluations) until it collapses around a local

minimum, or else (on occasion) becomes mired in an area where the

function is essentially constant. Several modifications of this

basic iteration have been made to prevent various possible traps

and infinite loops that are possible when the feasible set fails

to be convex or even connected. Further modifications have been

made to provide several starting and continuation options for the

users, as well as printing and termination options.

10
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To describe the program in greater detail it is convenient to

treat separately its three major aspects:

1) the basic iteration;

2) termination;

3) initialization.

We will then make some comments about the continuation and print-

ing options

Referring to the notation of (1), and assuming that

OCRn, we are given a finite subset K of S, termed a "complex".

Typically the size of K (denoted KPTS in the program) is strictly

between n and 2n; unless otherwise instructed our program sets

KPTS = least integer > 1.5n. Three points of K are now singled

out: NLO, XNXTHI, XHI, so that

f(XLO) = min{f(X):XeK}

< . < f(XNXTHI) <

f(XHI) = max{f(X):XcK}.

The centroid XC of{X£K: XyXHI} is now computed and, for the

moment, is assumed to be feasible (i.e., XC EQ). Next the point

XHI is reflected through XC to a point XNU so that dist (XNU, XC)

4tI = STEP-dist(XC, XHI); here STEP is a program parameter typically

in the range (1,21. Thus

XNU = XIII + (1+STEP) (XC-XHI). (3)

11



Now if it happens that XNU is both feasible and satisfies f(XNU)

< f(XNXTHI) we define a new complex by replacing in K the point

XHI by XNU; in this case the basic iteration is complete.

Should either of the two requirements on XNU fail, XNU

is backed halfway towards the centroid XC along the line through

XC and XHI. If this point meets both requirements we substitute

it for XHI and obtain a new complex. If not, we halve again.

If after a finite number (typically 5-10) of such attempts we

are still unsucessful, we set XNU = XC and commence moving XNU

halfway towards XLO, again trying to meet the twin requirements of

feasibility and lower f-value. If a finite number (typically 10-

20) of such attempts are still unsuccessful, the algorithm is

terminated if the last move resulted in feasibility only. If not,

we reflect the latest XNU an equal distance through XLO and if

both requirements still cannot be met, the algorithm is again

terminated. In all these cases of premature termination a warning

message is printed indicating either an infeasible direction (and

suggesting that the best point XLO is located in a very "thin"

region of Q), or else the inability to decrease the function value

sufficiently, in which case the algorithm is simply "stuck". 
b

There is one other conceivable difficulty that can

arise during a basic iteration, and that occurs when the centroid

XC is not feasible. Of course, this could only happen when 0 is

not convex. In this case we again set XNU = XC and commence

12
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moving XNU towards XLO as just described, repeating exactly the

above steps. Hence, either a new complex is obtained or else

termination ensues with the appropriate warning message.

Earlier variants of this basic iteration are described

in the original source (24] and in (4, 20]. A flow chart of our

version appears in Fig. 1 (wherein the identification Point4-.XNU

should be made).

In most "reasonable" optimization problems the basic

iteration as just described will result in a new complex. Con-

sequently we can expect to generate a sequence of complexes and so

must decide when to cease. Roughly we should do so when no further

progress is being achieved. In practice we evaluate this con-

dition by means of the absolute and relative oscillation of f on

the complexes. If either of these quantities drops under given

thresholds for a finite number (typically 5) of complexes in

succession, the algorithm terminates. Otherwise a new basic

iteration is carried out. Of course an upper bound on the number

of iterations must also be supplied.

Thus, assuming that new complexes can be generated we

jcontrol termination with four program parameters: ABSTOL, RELTOL,

NTOL, and NLOOPS. If for a sequence of length NTOL of complexes

13
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Ki+1 , Ki+2 1..., Ki+NTOL we find

f(XHI) - f(XLO) < ABSTOL, (4)

or failing this, if

f(XHI) - f(XLO) < RELTOL.If(XHI)j, (5)

the program terminates with a convergence assertion. Otherwise,

it terminates with a warning when the number of basic iterations

exceeds NLOOPS. These termination procedures are displayed inFig. 2.

To initialize the optimization process we must construct

a first complex. Our program permits this to be done in three

ways:

a) by direct assignment;

b) randomly about a given feasible point;

c) choosing the best KPTS points from a preliminary
random search of Q.

Option a) might be used when the geometric structure of Q was

known and simple (e.g., ={(xl,...,xn): 0xi, xi<l), and no

information about the minimum of f over Q was available. Option

b) is valuable when there is a priori information about f to the

extent that we believe that for some x(0) E, f(x (0)) is close to

min f(). The remaining KPTS-l points for the initial complex

are then produced sequentially by first drawing a point randomly

within the region defined by the explicit constraints {x: ai-x i

<b., l<i<n} in (2), and then retracting it by halves towards x

until it becomes feasible. If a finite number (typically 10-20)

16
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of these retractions fails to result in feasibility, we begin

again with a new random point.

In the remaining circumstances we are effectively ignorant of both

the geometry of Q and the behavior of f. If so, we utilize option

c) by making an initial random search of Q and retaining the best

KPTS points to form the initial complex. The only complication

here is the number of random points (denoted NRANPT in the program)

to utilize. Clearly we must have NRANPT > KPTS, but also in

practice we must confront the trade-off between the cost in terms

of function evaluations of taking NRANPT large vs. the cost in

terms of low probability of being close to the minimum if NRANPT

is small.

One way to sensibly determine a value of NRANPT is to

require a certain probability of placing at least k points inside

a small neighborhood V of the global minimum of f in Q. If the

relative volume of V in Q is e, then

Prob(> k points in V in N tries)

k-i
= 1 - il0.= (I-a) N - i

k-i

= 0( T (N-i)!

> 1 - (1-) N N k-I exp

so that to make thi-s probability exceed 6 it suffices to choose

N so large that

18



(1-a) Nk-i exp <

In the special case where k=l, the "exp" term can be dropped

from the left hand side.

To illustrate, let us take V be to a cube of side length

2r centered at the global minimum. In general V need not exist

if the minimum is too near the boundary of 0. However, if there

are no implicit constraints, or if we can be sure for other

reasons that the minimum is well inside Q, then it makes sense

to discuss V. Now a=(2r) n/vol(Q) and if k=l we need to choose

N so that

N > 1o(1-8) > 109(1-a) log(l-) vol().- log(l-a) - - a (2r )n

The least such N are displayed in Fig. 3 for nominal values of g

and n, with r set = 0.1 and vol(Q)=l. One can easily note a very

prominent "curse of dimensionality" here. This concludes our

discussion of the initialization step in the program.

The progress of the algorithm when applied to a par-

ticular problem can be monitored as desired through the use of

four print options. These are set by assigning to a variable

IPRINT values = 0,1,2,3. The 0 value supresses all printing;

this might be appropriate when the optimization is serving as

a subroutine to a larger program. The 1 value causes only the

final answer (best point and least function value) and machine

19
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2 5 10

0.5 18 2166 6,769,016

0.9 58 7196 22,486,183

0.95 75 9362 29,255,198

Fig. 3. Least number of random samples to
give probability of at least one sample
falling in cube of radius 0.1 within a
unit n-volume.

execution time to be displayed. The 2 value results in display of

the best initial complex point and corresponding function value

followed by each new improved point, the corresponding lower func-

tion value, and the loop number w en this improvement occurred.

Finally, the 3 value causes the entire initial complex to be dis-

played, followed by further information for every iteration,

whether or not an improvement was achieved. Specifically, the new

point and its function value are displayed along with the index of

the point in the previous complex which it replaces, and the

number of function evaluations required to obtain the new point.

It remains to discuss the continuation options. Recall

that the program will terminate for one of three reasons: con-

vergence criterion met, number of iterations loops exceeded, or

prematurely, because of failure to construct a new complex. Use

of the IPRINT =2 or 3 option will have enabled the user to gain

an impression of the progress made and its rate since initializa-

tion. If this progress is satisfactory but the onvergence criterion

20



is unmet, the user will probably wish to continue from the most

recent complex. On the other hand, if the algorithm appears to

be struggling, the user is also given the option of restarting

around the best point discovered. That is, the best point is now

denoted x and initialization option b) (defined on p. 16) is

implemented.

It 2
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IV. PARAMETER AND SUBROUTINE SPECIFICATIONS

The (FORTRAN) program consists of a main program, seven

general subroutines, and two user supplied subroutines. In greater

detail these are described next.

SUBROUTINE BOX is called by the main program to set up

the initial complex, call the basic iterative subroutine GOBOX, and

print the final answer.

SUBROUTINE GOBOX is the basic iterative subroutine; it

accepts an initial complex and iteratively constructs new ones

until termination. As necessary it calls the special purpose sub-

routines MOVE, FEASBL, CENTER, and the function evaluator FUNC.

SUBROUTINE MOVE repeatedly defines a new point halfway

between two given points until certain termination criteria are

met.

SUBROUTINE FEASBL checks that a given vector belongs to

sets Q of the form (2). If not it attempts to reposition this

vector so as to meet all constraints.

SUBROUTINE CENTER computes the centroid of a complex

less one point.

SUBROUTINE GBO defines an all random initial complex

according to initialization ootion c).

SUBROUTINE GD1 defines a random complex to include one

given feasible point according to initialization option b).

SUBROUTINE FUNC computes the value of a given function

22



at a given point in its domain.

SUBROUTINE IMPLCT defines the various implicit constraint

functions gj appearing in (2).

Program parameters and control variables are user supplied

as needed through a NAMELIST specification statement. It assigns

the name "GO" to refer to the following list of variables and

array names...

Problem description:

NX: number of independent variables

NIC: number of implicit constraint functions gj in (2)

MAXMIM: set -+1(-l) to maximize (minimize)

XMIN: array of lower bounds for independent variables

XMAX: array of upper bounds for independent variables
XIMIN: array of lower bounds on constraint functions

XIMAX: array of upper bounds on constraint functions

Basic iteration controls:

KPTSET: used to prescribe number of points in complex

NICUTS: upper bound on number of halfway moves towards centroid

N2CUTS: upper bound on number of halfway moves away from centroid

STEP: step size of reflection in basic iteration (see (3))

NLOOPS: upper bound on number of basic iterations

NTOL: convergence parameter = number of consecutive iterations
without sufficient progress.

23



ABSTOL: convergence parameter (see (4))

RELTOL: convergence parameter (see (5))

Initialization and run parameters:

IRUN: program operation control; usage defined in section V

IPRINT: output control; usage defined in section III

MAXRAN: bound on number of attempts to establish initial complex

NRANPT: total number of random draws from feasible set to define
initial all-random complex

SEED: seed used in system uniform random number generator

XO: initial feasible point

XXO: initial feasible complex

Of these variables it is imperative that the user

assign values to the first five and, if NIC > 0, to the next two

also. Having done so the program will run using the default set-

tings of the remaining parameters; in particular an all-random

initial complex will be chosen.

In practice, the user will want to consider the appro-

* priate values for the initialization and convergence parameters.

According to the initialization option chosen, one of XO, XXO or

NRANPT must be defined. The user will also probably need to assign

relevant values to the convergence tolerance values ABSTOL and

RELTOL, and the iteration bound NLOOPS. By default, ABSTOL=0.,RELTOL=

0.000001 and NLOOPS=500. Also, by default, STEP=l.5,

24



KPTS=IFIX (l.5*NX+0.5), NlCUTS=8, N2CUTS=16, and IPRINT=l. The

use of the program control IRUN is described in the next section,

along with several examples.

As already noted the STEP parameter should satisfy

1.0 < STEP < 2.0. Ideally one would like STEP larger initially to

make rapid progress towards the solution point and smaller as this

point is approached. In general, larger values of STEP can result

in infeasible reflected points and consequent loss of time in

retreating towards the centroid, while small values of STEP result

in slow progress and increased iterations. However, as the length

of a reflection step is roughly proportional to the diameter of the

associated complex, the step lengths automatically decrease as the

algorithm progresses and the complexes shrink. Hence algorithm

performance is relatively indifferent to moderate changes in STEP

and STEP = 1.5 has proved to be a satisfactory default value.

Finally, there is the matter of "relevant values" for the

tolerances ABSTOL and RELTOL. In general, only one of these needs

be positive. If the user has a good idea of the order of magnitude

of the optimal function value (as, for instance, in Example 4 of

the next section), then ABSTOL should be set according to the final

accuracy desired. If, on the other hand, the user has no reliable

guide to the magnitude of the final function values, we suggest the

default values of these two tolerance parameters. These cases are illustrated

in ExanVples 5, 6 below where, in fact, even smaller values of RELTOL are employed.

25
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V. PROGRAM OPERATION AND EXAMPLES

To utilize the program for the solution of a particular

optimization problem of the form (1), (2), the user should do the

following:

1) define the objective function f in SUBROUTINE FUNC,

and the constraint functions gj in SUBROUTINE IMPLCT.

In the latter the notation XI(J) is used for g.,

with J=l, 2, ..., NIC;

2) alter the DIMENSION statement in the main program,

if necessary, to accomodate values NX>10 or NIC>9.

Compile and run, then:

3) input desired values of the relevant NAMELIST

variables, finally assigning a valu to the control

IRUN from among the following options.

IRUN 0: stop

1: beain with user specified complex XXO

2: begin with user specified feasible point XO

3: begin with all-random complex (specify NRANPT)

4: continue with further iterations from most recent

complex

5: restart as in IRUN = 2 with XO set equal current
best point

6: reset all NAMELIST variables to default values

7: list current value of all NAMELIST variables

We now illustrate the operation of the program and the

results obtained on a variety of examples. The actual outputs

reported below result from operation of a double precision FORTRAN
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version of our method in CMS on an Amdahl 470/V7 mainframe computer.

A listing of this version appears in the Appendix.

Example 1. Minimize 100(x 2-x 1
2 ) + (1-x1) 2

This is a famous test problem associated with the name of Rosen-

brock. It is an unconstrained minimization; the objective fu.nction

surface is notable for a narrow deep curving valley. The true

solution is clearly 0 at (1,1). We implement the program by

setting NX=2, NIC=0, XMIN=2*-2., XMAX=2*2. (thereby constraining

(xjx2 ) to the cube defined by Ixil<2), and MAXMIN = -1. We

report in Fig. 4 below the results of three sets of 10 runs with

the indicated values of ABSTOL, RELTOL, and STEP. (In all the

examples the default value STEP = 1.5 is used unless otherwise

noted.) In all cases the conventional starting value XO = (-1.2,

1.0) was used (IRUN = 2). For this example, and in general when we can

reasonably guess at the magnitude of the optimal function value, we should set

FELTOL = 0.0 and choose ABSTOL according to the desired accuracy. We did so

in the second set of runs here, desiring that F be reduced below 1010. The

third set is the same except for STEP = 1.3 (the original Box recmation);

in this case we note a slightly poorer and more erratic result.
Function Fial

Evaluations Function Value
,1 ABSIOL = 0.0 916 1.029 D-24
J REL7OL = 0.000001 (323) (2.106 D-24)

ABS'OL = 5.0D11 360 5.729 D-ll
RELTCL = 0.0 (53) (10.780 D-ll)
ABSIOL = 5.01D-1 317 6.773 D-09
RETOL = 0.0 (63) (18.333)D-09
STEP = 1.3

Fig. 4. Means and (standard errors) for the Rftsenbrock function minimization.
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We note that since feasible points are readily available in

this example, the pure random start, being wasteful of function

evaluations, is avoided.

Example 2. Maximixe x1
2+4x1x2+7x2

2 over the set Q={(Xlx2

0<x i < 1 , -1<xl+2x2_l, -1<3x2-4x2-<1. This is a concave quadratic

program over the pentagonal region S2 with exact solution 1.48 at

the vertex (0.2, 0.4). We set NX=NIC=2, XMIN=2*0.1, XMAX=2*1.1,

XIMIN=2*-I.I, XIMAX=2*l.I, ABSTOL=RELTOL=.000001, and made ten

runs starting from XO=(0.3, 0.2). The results were

function function solution
evaluations value point

mean J 54 1.478883 (.200004, .399998)
(standard error) (10) (0.000012) ((.000010, .000005)).

Example 3. Minimize 4x12-2. 4 6 +x6/3+xlx2-4x22+4x24 over

the rectangle Q = {(Xl, x2): JXl1 .L2.5, x2 1l.5}. This is another

famous test problem, the objective function being known as the "six

hump camel back function" [17]. It is a challenge for local

gradient-utilizing methods because of the presence of an assortment

of stationary points: 6 local minima, 2 local maxima, and 7 saddle

points. Published numerical tests of other global optimization

procedures [17] give a global minimum value of -1.0316 at the

points (0.08984, -0.71266) and (0.71266, -0.08984), at a cost of

72-800 function evaluations. We set ABSTOL=RELTOL=0.0001 and made
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5 runs each with KPTS=3, KPTS=4, starting in all cases at XO=(0,0)

(IRUN=2). The results were

function evaluations function value

KPTS=3 132 -1.031626

(21) (0.000001)

KPTS=4 130 -1.031617
(14) (0.000012)

We note about the same amount of work involved with the larger

complex, but also a slightly greater variability in the final

answer.

Example 4. Solve the nonlinear system of equations

3 3
2x1 x2 = x

6x1 - x2
2 + x2 = 0.

By sketching the corresponding pair of curves in the (xlx 2 ) -

plane, one can easily verify a pair of exact solutions at (0,0) and

* (2,4) and one other solution near (1.5, - 3.0). To determine this

third solution exactly we try to minimize the sum of the squared
1*3 3 2 2 2
residuals; that is, minimize (2x1 x2-x2 ) + (6xl-X2 +x2). The

least value is of course 0, and the solution point will be our

unknown third solution. We set Q={(x I , x2): 1<xlc2, - 4<Sx2 -2},
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XO=(1.5, - 3.0), and ABSTOL = 1.OD-13, RELTOL = 0.0, (attempting to

obtain six or seven significant figures). The results of five

runs were

function evaluations solution point

mean 291 (1.464352, -2.506013)
(standard error) (24) (0.000000, 0.000000)

In all cases the objective function was reduced to less than

5.OD-12, with an average final value = 8.85D-13.

Example 5. Minimize x1
2 +x2

2+x3
2 over the region

Q={(Xl, x2, x3): Ixil10, 3<xlX2 X3 , 3<xl+x 2-x3 }. This problem is

unusual because Q is disconnected: it consists of three components

each of equal distance from the origin. Hence there are three

distinct solution points, each of which is a boundary point. These

points can be obtained via the Kuhn-Tucker conditions and analysis

of the possible sign patterns of the coordinates, viz., (+,+,+),

(+,-,-), and (-,+,-). Thus the first point must obey the conditions

x
I 
= x 2

XlX 2X3 = 3

Xl+x 2 -X 3 = 3.

1 23

Aj This leads to the cubic equations x 2(2x-3)=3 for xl; its solution

= 1.910820 = x2La. Therefore, x 3=2x 1-3 = 0.8216404b. By symmetry,

the other solution points are (a, -b, -a) and (-b, a, -a), and the
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common minimum function value = 7.977559.

This example is meant to typify the situation wherein we

are ignorant of the geometry of the feasible set 0. In such cases

we must resort to the pure random start option (IRUN=3). Setting

NRANPT = 500, ABSTOL = 0., and RELTOL = 1.OD-08, the program easily

reveals the three distinct solution points. The results of ten

runs were

function evaluations function value

I mean 1043 7.977583
(standard error) (253) (0.000046)

Eight of the ten runs actually resulted in function values <7.977560.

Example 6. Minimize 100(x 2-x1 2 + (1-x) 2 + 90(x 4-x 32 )2 2 2

+ (l-x 3 )2 + 10.1[(x 2 -1) 2 + (x 4 -1)2 1 + 19.8(x 2 -1)(x 4 -1), over the

four-dimensional cube Q={(x 1 ,X2,x 3 ,x4): IxiI<10}. This is another

test problem associated with the name of Wood (6, p. 403]; it is

designed to have a non-optimal stationary point with a corresponding

function value of approximately 8.0 that can cause premature

convergence. The optimal solution is clearly 0 at (1,1,1,1). A

starting value XO=(-3,-l,-3,-l) is suggested. Our program handled

this problem easily with no premature stalls. The results of ten

runs with ABSTOL=0., RELTOL=I.OD-10 (the value of the objective

function was increased by 1) uniformly yielded function values
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< 1.0000000005. with an average of 1145 (198) function values.

Example 7. Our final example is a nonlinear regression

taken from [24]. The problem is to model the resistance (R) of

a thermistor as a function of temperature (T) via the model

R = a exp ( T + c

Specifically we want to assign values to the parameters a,b,c

so as -o achieve the best fit to the data

T R

50 34,780

55 28,610

60 23,650

65 19,630

70 16,370

75 13,720

80 11,540

85 9,744

90 8,261

95 7,030

100 6,005

105 5,147

110 4,427

115 3,820

120 3,307

125 2,872
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We do so by minimizing the mean squared residual

j- a exp

The source cited reports that this problem caused considerable

difficulity to the algorithms being tested. In general we note

that the special structure of-nonlinear least squares problems can

be utilized in the design of specialized algorithms such as the

methods of Gauss-Newton or Levenberg-Marquardt [25]. For the

latest in such algorithms, see [26]. These may certainly be

expected to be far more efficient than our present all-purpose

method. Nevertheless, it is interesting to test our method on

such a problem, recalling particularly the discussion of the

computer time vs. analyst time trade-off.

The suggested initial values are XO=(0.2, 4000, 250.),

the corresponding function value being 41,153. We set STEP=2.

and ABSTOL = .0001. = RELTOL . We also introduce the artifical

constraint gl(a,b,c) = b/(50+c) < 70 in order to avoid overflow

problems in the exponential. The outcomes of ten runs were

classified as success or failure according as convergence was

or was not achieved with at most five restarts (IRUN=5). The

results were
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function function CPU time
number evaluations value (sec.)

2.94
6480 9.3788

success 6
(1250) (.0010) (.58)

3031 267.74 1.24
failure 4

(1340) (90) (.70)

The mean solution point for the six successes was

(.005612, 6181.00, 345.210)

with standard errors (.000006, 0.85, 0.030); this may be compared I
with the optimal solution reported in [241:

(.005609, 6181., 345.2).

-3
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VI. CONCLUSIONS

The numerical practice of nonlinear multivariate

optimization is an important, difficult, and much studied subject.

Numerous algorithms have been proposed, some exotic, some effective,

most requiring special hypotheses on the objective and constraint

functions. We have presented here an extremely simple and robust

procedure for handling the most general nonlinear inequality con-

strained optimization, and demonstrated its operation and effective-

ness on a variety of test problems of low dimension. The method

utilizes the basic Box complex iteration with modifications to

avoid traps. The computer implementation provides a variety of

initialization and continuation features and is designed for

interactive use. While problems of a special nature can be solved

more efficiently with specially formulated algorithms, in a certain

practical sense our method is reasonably competitive with these,

and moreover constitutes a safe reliable procedure for use on

problems with little or no exploitable structure. Examples of

the latter, on which our method has been successfully applied,

include minimizing a discontinuous cost function subject to a

communications network reliability constraint, and minimizing a

1two-stage survival probability function to achieve an optimal

j attack against a given layered ballistic missile defense system.
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7

Appendix

This appendix contains the complete FORTRAN listing of the

optimization program described above. The data for the function

and implicit constraint portions, SUBROUTINES FUNC and IMPLCT

respectively, correspond to Example 7 in Section V.

3
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IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION XX( 10Y15)tvXSTAR( 10) ,XMIN( 10) ,XMAX( 10) ,XO( 10)
DIMENSION XIMIN(9) ,XIMAX(9) ,XI (9) ,FF( 15) vXXO( 10,15) ,X( 10)
COMMON /BOXCOM/ STEPRELTOLvABSTOLYNTOLYNICUTSvN2CUTSPNLOOPS

* PIPRINTvMAXMINSEEDPNRANPTPMAXRAN
REAL*8 LXMINLXMAXLXIMINPLXIMAXLXOLXXOILBLANK
NAMELIST /G0/ NXNIC ,MAXMINvXMINXMAXXIMINXIMAX,

* KPTSETNlCUTSPN2CUTSvSTEPirNLOOPSvNTOLABSTOLRELTOL,
* IRUNPIPRINTNRANPTMAXRANSEEDPXOPXXO

DATA LXMINPLXMAX /8H XMIN v8H XMAX /
DATA LXIMINYLXIMAX /8H XIMIN P8H XIMAX/
DATA LX0PLXX0,LBLANK /8H X0 r8H XXo 9,8H

C
C PROGRAM NEWBOX USES SUBROUTINE BOX TO SOLVE THE PROBLEM
C MAXIMIZE MAXMIN*FUNC(X)
C SUBJECT TO XMIN(I) oLE. X(I) .LE* XMAX(I)
C XIMIN(J) #LE, XI(J) .LE. XIMAX(J) vJ=1,...vNIC
C WHERE XI(J) IS THE VALUE OF THE JTH IMPLICIT CONSTRAINT FUNCTION
C EVALUATED AT THE POINT X? AS COMPUTED IN SUBROUTINE IMPLCT,
C
C THE USER MUST SUPPLY SUBROUTINE FUNC(XvNXF) WHICH CALCULATES Fy
C THE FUNCTIONAL VALUE OF A POINT Xy AND A SUBROUTINE
C IMPLCT(XPNXvXIPNIC) WHICH CALCULATES XIP THE NIC IMPLICIT
C CONSTRAINT VALUES CORRESPONDING TO THE POINT X.
C
C
C SET PARAMETERS TO THEIR DEFAULT VALUES.
C

100 KPTSET=0
N1CUTS=8
N2CUTS= 16
STEP=1 .5
NLOOPS=500
NTO(I.=5
ABSTOL=0.
RELTOL= .000001

IPRINT=l

MARN=0

SEED-1 84287807
C
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C READ NAMELIST 9G0 DATA DEFINING PARAMETERS FOR NEXT RUN
C

200 WRITE(6r9)
9 FORMAT('IENTER NAMELIST £60 INPUT (IRUN=7 LISTS ALL)')

READ( 5,GO)
IF(IRUNoLE.0) GO TO 1000
IF(IRUN-6) 300p100,400

C
C CALL BOX TO OPTIMIZE FOR THE CURRENT PARAMETERS
C

300) KF,*rS:NX+(NX+1 )/2
IF (KP*TSET .GE .2) KPTS=KPTSET
CALL BOX (XX, NX dP'TSNICi-XMINXMAX, XIMINXIMAX
* ,PFFXI ,XSTARFSTARXX0PXX0, IRUN)

GO 'TO 200

C PRINT THE CURRENT VALUES OF THE PARAMETERS
C

400 WRITE(6v1) NXPNICYMAXMIN
1 FORMAT('OCURRENT VALUES OF PARAMETERS ARE:',,,

* '0'YlOXP'PROBLEM DESCRIPTION',!,
t NXPNICMAXMIN ='v315)

WRI'TE(6p2) LXMIN, (XMIN( I), 1=1 NX)
WRITE(6p2) LXMAX, (XMAX( I), 1=1 NX)

WRITE(692) LXIMAX, (XIMAX(I) ,I=1,NIC)
2 FORMA*T(AB,'= 'PlF'10E12.,/P(IOXlF10OE12#4))

WRIrVE(6p3) KPTSETN1CUTSN2CUTSYSTEPNLOOPSNTOLABSTOLPRELTOL
3 FORMAr('0'p10Xv'BOX PARAMETERS'Y/v

* ' IPTSETPN1CUTSYN2CUTSYSTEP = 'v315pFl2#6v/y
* ' NLOOPSYNTOLPABSTOLYRELTOL = 'v215v1P2E12#3)

* WRITE(6p4) IRUN9,IPRINTi'NRANPTYMAXRANPSEED
4 FORMAT('0'Y1OXP'RUN INITIALIZATION PARAMETERS'p/,

*'IRUNIPRIN'TNRANPTPMAXRANSEED 'p214v2I7v3XqZ16)
WRITE(692) LXO, (XO(I) rI=1,NX)
WRITE(6v2) LXXO, (XXO(Iy1)plI4,NX)
DO0 440 J=2pKPTS

* 440 WRITE(6p2) LBLANK, (XXO( I J) ,I=1 NX)
GO TO 200*11000 STOP
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SUBROUTINE BOX(XXPNXPKPT~tNICXMINXMAXXIMINXIMAXPFFXJ
* vXSTARvFSTARtXtX0vXX0vIRtUN)

IMPLICIT REAL*B (A-Hp O-Z)
DIMENSION XX(NXKPTS)PXMIN(NX)tXMAX(NX)tXIMIN(NIC),XIMAX(NIC)
DIMENSION FF(KPTS)pXICNIC)PXSTAR(NX)
DIMENSION X(NX)PXO(NX)PXXO(NXPKPTS)
COMMON /BOXCOM/ STEPPREL.TOL.PABSTOL.NTOLYNICtJTSN2C)TSPNLOOPS

$ ,IPRINTMAXMINSEEDtNRANPT
REAl.*B DDATEDTTME

C
C BOX SETS UP THE INITIAL COMPLEX THEN CALLS GOnBOX TO FIND THE
C OPTIMAL. NX-VECTOR XSTAR AND ITS FUNCTIONAL VALUE FSTAR.
C

GO TO (J0O,200v300,400?500)vIRUN
C
C IRUN=i . . . . SET INITIAL XX TO USER-DEFINFD XX0
C

100 WRITE(6,1) KPTSPSTEP
1 FORMAT('OFNTERING BOX WITH DEFALT XX',/

* ,' KPTSYSTEP - 'P15,F1O.6)
DO 150 I=lPKPTS

[DO 140 11,PNX
140 XX(I,.J)=XXO(IFJ)

CALL FLINC(XX(IPJ),NXYFF(J))
150 CONTINUE

GO TO 9~00
C
C IRUN=2 . . . . SET INITIAL XX RANDOMLY AROUND (FEASIBLE) XO
C

200 WRITE(6,?) SEEDPKPTSPSTEPPXO
2 FORMAT('OENTERING BOX WITH RANDOM XXv SEED - ',D13.5,/

* ,' KPTSPSTEP -'v15,FIO.6r/
* ii' XO =',1P9E12#4,9Xv1P9E12*4))

CALL GB1(XXPNXtKPTSXOFFiXMlNvXMAXXIMINuXIMAXXI
* ,NICIOK)

NFLINC-KPTS
IF(IOK.oGT.) SO TO 900
GO TO 1000

C
C IRUN=3 .... SET INITIAL XX RANDOMLY IN FEASIBLE RF(GION

300 WRITE (6,3) SEFDPKPTSPNRANPTSTEP*i'i3 FORMAT('OENTERING BOX WITH ALL RANDOM XXv SEED -'PD13#5,/
* ,' KPTSPNRANPTvSTEP - 'r215,Fl0*6)I CAL. 0BO(XX ,NXKPTSFF, XMINXMAX, xImINpxrMAX

* ,XIPNICPX,IBK)
NFUNC=MAXO(CKPTSPsNRANPT)
IF(JOK.GTO) (30 TO 900
00 TO 1000

C
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C IRUN=4 .... CONTINUEF WITH XX AND FF AS LEFT BY PRFVIOuSg RUJN

400 WRJTE(694) KPTSPNLOOPSPSTFP
4 FORMAT('OCONTINJING BOX WITH SAME XX'p/

't KPTSPNLODOPS'STEP - ',215PF1O.6)
N F INC= 0
GO TO 900

C
C IRUN=S . . . . SET INITIAL XX RANDOMLY AROUND L-AST XSTAR
C

500 WRITE(6,6) SEEDPKPTSSTFPiXSTAR
6 FORMAT('ORESTARTING BOX AROUND XSTARP SEED =',DI:5.5p/

* KPTSPSTEP ='915PF10.69/
* ,' XSTAR =t,1P9FA2.4q/,(12X,1P9E12.4))

CALL GF41 (XXNX,KPTSXSTARFFXMIN,XMAXXTMIN,XIMAX,XI
* ,NICPIOK)

NFUNC=KPTS
IF(IOK.GT.0) GO TO 900
GO TO 1000

C
C NOW CALL BOX WITH XX AND FF TO FIND OPTIMUM XSTAR AND FSTAR
C

900 CALL TIMFS(DDATFDTIMFIVCPUIPITCPUJ)
CALL GOBOX(XX,NXPKPTS,NIC,XMIN,XMAX,XIMINXIMAX,FFXI

* ,XSTARvFSTAR,MI-COPS,NFINC)
FSTAR=MAXMIN*FSTAR
CALL TIMES(I1DATEDTIMEIVCPIJ2,ITCPU)
TIME=.000013*( IVCPUI2-IYCPtUI)

* IF( ]PRTNT*GT*0) WRITE(695) ML.OGPSPNFIJNC,TIMEFSTARPXSTAR
5 FORMAT('O',15,' Lnopsp,,6,' FUNCS, AND',F7#3,' SEC$ LATER BOX'

*,' FINDS FSTAR AND XSTAR OF'rlPF16.9t/v(1P9E14*6))
C
1000 RETURN

END
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SUBROUTINE GOBOX(XXNXPKPTSNXCP XMINXMAXXJMINXJMAX
* ,FFPXIXCPFSTARPLOPSNFJNC)

IMPLICIT REAL*B (A-Hy O-Z)
DIMENSION XX(NXKPTS),XMIN(NX),XMAX(NX),XIMIN(NIC)PXIMAX(4IC)
DImMNsION FF(KPTS)tXr(NIC)PXC(NX)
COMMON /ROXCOM/ STEPRELTOL,-ADSTOL ,NTOL.,NlCUTSvN2CIJTSNLODOPS

* VXPRINTpMAXMTN
DATA 10,11 / 0,1

C
C GIVEN AN INITIAL. COMPLEX OF KPTS NX-VECTORS IN XX9 AND KPTS
C FUNCTION EVALUATIONS IN FFY GOE4OX WILL TRY TO FIND' THE POINT
C WHICH MAXIMIZES FUNC ON THE FEASIBLE REGION. THIS POINT IS
C RETURNED IN ARRAY'XCP AND ITS VALUE IN FSTAR.
C
C FIND HI AND L.O POINTS IN THE COMPLEX
C

JLO1l

DO 40 J=29KPTS
IF(FF(J) .LT.FF(JI.O)) JLO=J
IF(FF(J).T.FF(.JHI)) JHI=J

40 CONTINUE
ITOL=O
IF(IPRJNT-2) 100P50,60

50 F=MAXMIN*FF(J)HI)
WRITE (692) I0,I1,JIHIF, (XX(IJIHI) ,Is1,NX)
GO TO 100

60 DO 70 I=IPKPTS
F=MAXMIN*FFCJ)

IF(.JE#.JHI) WRITE(A,) IOI,.JvF,(XX(Iq.J),I-lvNX)

1 FORMAT(' LPNFJvFtX-' ,313, IPE12.4, 1Xu9EI 1.3,1
* u(37Xp1P9El1.3))

2 FORMAT(' **LPPNF,.JvFX-',3I3uPEl2.4,1XvE1.3,/
* v(37Xp1P9E1I.3))

70 CONTINUE
C
C MAKE UP TO NLDOPS ITERATIONS, FACH TIME IMPROVING THE LOWEST VAI.UE
C

* 100 DO 500 ILOOP-ltNLOOPS

C LOCATE NEXT LOWEST POINT

NORMLC- 1
IFUNC=NFUNC
NEXTL.O=.JHI
DO 140 J-IPKPTS

IF(JsNEoJLO *AND, FF(.J).I.T.FF(NFXTLO)) NEXTLOmsJ
140 CONTINUE

C
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C FIND CENTROID AND CHECK ITS FEASIBILITY.
C

CALL. CENTER(XXPNXPKPTSPJE.OXC)
CALL FEASB. (XCPNXPXC.PXMINXMAXPXIMTNiXIMAXXINZC
* ,NMOVESvo)
IF(NMOVES.GT.O) 6O TO 200

C
C FOR FEASIBLE CENTROlDr LOOK FOR NEW POINT BY MOVING FROM LO POINT
C THRU CENTFR BY FACTOR OF STEP, THEN MOVE TOWARDS CENTER IF NECESSARY
C TO OFT A POINT BOTH FEASIBLE AND BETTER THAN NEXTL-O POINT.
c

DO 150 I=1YNX
150 XX(IJLO)=XX(IILO-)+(1 *STEP)*(XC(I)-XX(IT,JL-O))

CALL MOVE(XX(1p.JL.O),NXPXCPNMOVFSNCTSPFF(iL.O),FF(NEXTLO)
* ,PNFUNCPXMINPXMAXXIMINXIMAXXI ,NIC)
IF(NMOVES.L.E.NCITS) GO TO 400

C
C IF ABOVE DIDN'T WORKv OR IF CENTER NOT FEASIBLEP LOOK FOR NEW
C POINT BY MOVING FROM CENTER TOWARDS HI POINT.
c

200 DO 250 I=iNX
250 XX(lt,JLO)=XC(I)

NORM-C=- 1
CALL. MOVE(XX(IPJLO) ,NXXX( 1,1HZ) vNMOVEStN2CU)TS
* FF(.lLO) PFF(NEXT1.O) PNFINC
* iXMZNPXMAXPXXMINXIMAXXIPNIC)
IF(NMOVES.E.N2ClUTS) GO TO 400

* C
C IF THIS DIDN'T WORK, TEST ON BOTH SIDES OF HI POINT ALONG LINE
C THRU CENTER FOR FEASIBILITY AND IMPROVEMENT. IF BOTH ARE INFEAS-
C IBLE PUITT WITH INFEASIBLE DIRECTION AT 8000 IF ONE IS BOTH

*C FEASIBL.E AND BETTER, CONTINUE WITH IT$ OTHERWISE QUIT WITH NO
C IMPROVEMENT AT 700
C

CALL FEASBL.(XX(IPJL.O),NXXX(1 ,.J.O)XMNXMAXXrMINXIMAX
* ,XIPNXCNMOVESP0)
IF(NMDVES*L.E*O) 0O TO 700
DO 260 I=1,NX

260 XX(IPJLO)=XX(I..JHr)4(XX(rIJHI)-XX(XIJLO))
CALL FEASBL-(XX(1r.J&.O)PNXPXX(1,.it.O)XMNXNAXuXIMINXIMAXI * vXIvNICpNd$GVESv0)
IFCNMOVES*GT.0) 6O TO 800
CALL. FUNC(XX(1v ,JLO) NXoFF(Jl.0))
NFUNC=NFIiNC+l

IF(FF(.JLn).GT.FF(NEXTL.O)) 00 TO 400
C
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C NOW THAT WdE HAVE IMPROVED THE LOW Xt TEST FOR COMPL.ETION AND
C LOOP AROUJND AGAIN
C

400 MFtlNC=NORML.C* (NFINC- IFLINC)
F1IAXMXN*FF (.JLO0)
IF(FF(JLO).L-F.FF(JHI)) 0O TO 440
IF( IPRINT.GE.2) URITE(6p2) li.OOPPMFIJNCPJ.O,GF

* , (XX(ItjI.O) ,I=1,NX)
JHI=JLO
GO TO 450

440 IF(IPRINT.GE*3) bRITE(6p1) ILnOPPMFUNCP.JlnoiF
* ,(XX(I,~jL.O) ,=1,NX)

450 Jt.O=NEXTLO0
I T nL. =I T n 1
ATOI..DAS (FF (.JH ) -FF (JL 0))
IF(ATOL..L.E.A95TOl.) On TO 480
IF(ATOL..GT.REITOL*DABS(FF(.JHI))) ITOt.=0

480 IF(rTOL..nE.NTOL) GO TO 600
500 CONTINUE

C
C NO CONVERGENCE

ILOPS-NLOOPSf 1
60 TO ?00

C CONVERGENCE
600 ILOOPS=Il.nOP

GO TO 900
c UNABL.E TO IMPROVE

700 M.P-ITL.OOP
a 0O TO 900

C INFEASIBLE DIRECTION
800 ILOOPS=-NL.nnPS-1

C
900 DO 950 XIz ,NX
950 XC(I)-XX(IF.JHI)

FSTAR=FF(JHI)

1' RETURN
* END
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SUBROUTINE FEASBL (XPNXPXCPXMINXtIAXXIMINt XIMAXXI ,NIC
* ,NMOVFSMAXMOV)

IMPL-ICIT REAL*8 (A-HtO-Z)
DIMENSION X(NX)PXC(NX)PXMIN(NX),XMAX(NX)
DIMENSION XTMTN(NIC) .XIMAX(NIC)vXI(NIC)
COMMON /BOXCOM/ STEPREi.TOLPABSTOLPNTOLPNICUTSN2CUfTSPNL.OOPS

* ,IPRYNTiMAXMIN
C
C TRIES TO MAKE VECTOR X FEAsIrL.F BY (IF NECESSARY) MOVING X
C TOWARDS GIVEN FEASrB.F VECTOR XC OP TO MAXMOY TIMES.
C
C CHECK AGAINST EXPLICIT CONSTRAINTS
C

NMOVES~o
100 DO 200 I=1,NX

IF(X(T)L.ToXMTN(I) *OR, X(I).ofT*XMAX(I)) 00 TO 400
200 CONTINUE

C
C CHECK AGAINST IMPL.ICIT CONSTRAINTS
C

IF(NIC.L.E.0) RETURN
CALL- IMPLCT(XYNXXINIC)
DO 300 I=1,NIC

IF(XI(I)oLT.XIMIN(I) *OR* XI(I)oGT.XIMAX(I)) 60 TO 400
300 CONTINUE

RETURN

C INCREMENT NMOVES AND IF .LE# MAXMOVr MOVE X TOWARDS CENTROID.
C

400 NMOVES=NMOVES+1
IF(NMOVES.GTMAXMOV) RETUJRN
DO 500 I=1,NX

GO TO 100

END
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SUBROUTINE MOVE(XoNXPXT ,NMOVESMAXMOV.FFMIt4NPUNC
* ~PXMXNapXMAXPXIJIINPXIMAXXIPNIC)

IMPLICIT REAL*8 (A-HPO-Z)
DIMENSION X(NX) ,XT(NX) ,XMrN(NX)PXMAX(NX)PXZIffI(NrC)
DIMENSION XIMAX(NIC)PXI(NIC)

C
C TRIES TO VERIFY THAT VECTOR X IS BOTH FEASIBLE AND HAS VALUE
C .GT. FMINv IF NECESSARY BY MflVING X TnWARDS THE VFCTOR XT UP
C TO MAXMOY TIMES.
C

NMOVES=O
100 CALL FEASBtL(XPNXPXTPXMJNXMAXXIMINXIMAXPXI ,NIC

* , IMOVESI$AXMOV-NNOVES)
NMOVES=NMOVES+IMOVES
IF(NMOVES.GT.MAXMOV) RETURN
CALL FUNC(XNXF)
NFUNC=NFUNC +
IF(F.GT*FMIN) RETURN
DO 200 INX

200 X(I)=0.5*(X(J)+XT(l))
NHOVES=NMDVFS+l
IF(NMOVES.I.F.MAXMOV) nO TO 100

END

SUBROUTINE CENTER(XXYNXPKPTSPNOTJPXC)
IMPLICIT REAL*8 (A-HO-Z)
DIMENSION XX(NXPKPTS)YXC(NX)

C
C COMPUTES THE NX-VECTOR XC AS THE CENTROID OF THE KPTS NX-VECTORS
C IN XX LESS THE ONE INDEXED BY NOTJ.

C DIVKM1-=1 ./(KPTS-1)

DO 200 I=1,NX
XSUM~O.
DO 100 J=1,KPTS

100 XSLJM=XSUM+XX( I J)
XC( I)=(XSUM-XX( I NOTJ) )*DIVKMI

200 CONTINUE

RETURN
END
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SUBROUTINE GBO(XXNXKPTSFFvXMINPXMAXPXIMINYXIMAX
* PXINICYXYIOK)

IMPLICIT REAL*8 (A-HrO-Z)
DIMENSION XX(NXd(PTS),FF(KFTS),XMIN(NX),XMAX(NX)
DIMENSION XIMIN(NIC),XIMAX(NIC)PXI(NIC),X(NX)
COMMON /BOXCOM/ STEPRELTOLABSTOLNTOLN1CUTSN2CUTSvNLOOPS

* ,IPRINTMAXMINSEEDNRANPTMAXRAN
C
C CREATES A RANDOM INITIAL COMPLEXY XX? BY CHOOSING THE BEST KPTS
C POINTS OUT OF A COLLECTION OF MAX(KPTSvNRANPT) RANDOM VECTORS,
C EACH UNIFORMLY DISTRIBUTED OVER THE FEASIBLE REGION.
c
C FILL XX WITH KPTS FEASIBLE RANDOM VECTORS
C

NRANX=0
MXRANX=MAXRAN*MAXO (tPTSYNRANPT)
DO 300 J~1,KPTS

100 DO 200 I=lvNX
200 XX(IJ)=XMIN(I)+RAN2(SEED)*(XMAX(I)-XMIN(I))

NRANX=NRANX+ 1
IF(NRANX.GT.MXRANX) GO TO 1100
CALL FEASBL(XX(1 J) ,NXXX(1 J) ,XMINXMAXXIMINXIMAXXI
* ,NICPNMOVESP0)
IF(NMOVESGT.0) GO TO 100
CALL FLNC(XX(1,J)PNXPFF(J))

300 CONTINUE
C

* KI=1KF'TS+l
IF(Klo.GT.NRANPT) GO TO 1000
JMINF=1
DO 500 J=2pKPTS

500 IF(FF(J).LT.FF(JMINF)) JMINF=J

C
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C CHOSE (NRANPT-KPTS) RANDOM VECTORSP ALWAYS KEEPING IN XX
C THE BEST KPTS VECTORS LOOKED AT SO FAR.
C

DO 900 K=K1,NRANPT
600 DO 650 I=1,NX
650 X(I)=XMIN(I)+RAN2(SEED)*(XMAX(I)-XMIN(I))

NRANX=NRANX+ 1
IF(NRANX.GT*MXRANX) GO TO 1100
CALL FEASBL(XNXPXpXMINpXMAXPXIMINXIMAXpXI ,NIC
* ,NMOVESv0)
IF(NMOVES.GT.0) GO TO 600
CALL FUNC(XPNXPF)
IF(F*LE.FF(JMINF)) GO TO 900
FF(JMINF)=F
DO 700 I=IPNX

700 XX(IPJMINF)=X(I)
JMINF1l
DO 800 J=2pKPTS

800 IF(FF(J) .LT.FF(JMINF)) JMINF=J
900 CONTINUE

C
1000 IOtK=1

RETURN
C
1100 WRITE(6v3) NRANX

3 FORMAT('0***** IN GBOP WE HAVE EXCEEDED THE MAX NUMBER'
* r' OF RANDOM POINTS ('PIp')'

IOK=0
RETURN
END
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SUBROUTINE 6E41(XXNXKPTSXOFFXMINXMAXPXIMINPXIMAXvXI
* ,NICPIOK)

IMPLICIT REAL*8 (A-HYO--Z)
DIMENSION XX(NXPKPTS)PXO(NX),FF(KFPTS),XMIN(NX)PXMAX(NX)
DIMENSION XIMIN(NIC)YXIMAX(NIC)FXI(NIC)
COMMON /BOXCOM/ STEPRELTOLAE4STOLNTOLN1CUTSN2CUTSPNLOOPS

* , IPRINTMAXMINSEEDNRANPTvMAXRAN
C
C CREATES A RANDOM INITIAL COMPLEXY XX, AROUND AND INCLUDING
C A GIVEN FEASIBLE VECTOR XO*
C
C CHECK XO FOR FEASIBILITY AND THEN PUT IT IN XX
C

CALL FEASBL(XONXXOXMINXMAXXIMINXIMAXXI ,NIC
* ,NMOVESP0)

IF(NMOVES*GT*O) GO TO 1000
DO 50 I=IYNX

CALL FUNC(XOPNXPFF(1))

C FILL REST OF XX WITH RANDOM VECTORS WHICH HAVE BEEN FORCED
C FEASIBLE BY MOVING THEM TOWARDS XO IF NECESSARY.
C

NRANX=O
MXRANX=MAXRAN*(KPTS-1)
DO 400 J=2,KFTS

100 DO 200 I=1,NX
200 XX( I J)=XMIN( I)+RAN2(SEED)*(XMAX( I)-XMIN( I))

NRANX=NRANX+ 1
IF(NRANX.GT.MXRANX) 0O TO 1100
CALL FEASBL(XX(lvJ) ,NXX0,XMINPXMAXPXIMINPXIMAXPXIYNIC
* ,NMOVESYN2CUTS)
IF(NMOVES.GT.N2CUTS) GO TO 100
CALL FUNC(XX(1vJ)PNXvFF(J))

400 CONTINUE
C

IOK1l
RETURN

1100 WRiTrE(6v2) NRANX
2 FORMA'T('0***** IN OBi, WE HAVE EXCEEDED THE MAX NUMBER'

*O= v' OF RANDOM POINTS ('P16p'))

RETURN
C
1000 WRITE(6i1) XO

1 FORMAT('0***** NON-FEASBIBLE INITIAL POINT GIVEN TO GB1'P/
Y ' XO = 1lP10E12.4)

IOK0O
RETURN
END
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SUBiROUTINE FIJNC(XPNF)
IMPLrcIT REAL.*9 (A-HPO-Z)
DIMENSION X(N)
COMMON /BOXCOM/ STEPRF.LTOLYABSTO.NTOI-,NC(TSP2C(JTSt4I-OOPS

* uXPRZNTPHAXMXN
DIMENSION Y(16)
DATA Y/34780.,286l0.,23650.,19630,u16370.,13720.,11540.,9744,v8261
a $p703O.t6OO5op5l47*t4427op3B2Oop3307#p2872./
RES9(AqBtCvYpT) -CY - A*DEXP(B/(T+C)))**2

C
C COMPUTES Fy THE VALUE OF THE FUNCTION WHEN EVALUATED
C AT THE POINT X (AN N-VECTOR).
C

F =0.

DO 100 .1=1o,16
T = 50.+5#*(.1-1)

100 F =F + RESQ(X(1)pX(2)pX(3)pY(J)pT)
F =DSQRT(F)

C *
F=MAXMIN*F
RETUJRN
END

SUBROUTINE IMPLCT(XPNXPXJNIC)
IMPLI-CIT REAL*8 (A-HPO-Z)
DIMENSION X(NX),XI(NIC)

C
C COMPUTES XIY THE NIC-VECTOR OF IMPLICIT CONSTRAINT
C FUNCTION VALUES AT THE NX-VECTOR X,
C

XI(J) =X(2)/(50.+X(3))

RETURN
END
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